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It is shown on a specific example that fractal boundary conditions drastically alter the properties of
wave excitations in space. The low-frequency part of the vibration spectrum of a finite-range fractal
drum is computed using an analogy between the Helmoltz equation and the diffusion equation. The irre-
gularity of the frontier is found to influence strongly the density of states at low frequency. The fractal
perimeter generates a specific screening effect. Very near the frontier, the decrease of the wave form is
related directly to the behavior of the harmonic measure. The possibility of localization of the vibra-
tions is qualitatively discussed and we show that localized modes may exist at low frequencies if the
geometrical structures possess narrow paths. Possible application of these results to the interpretation of
thermal properties of binary glasses is briefly discussed.

PACS number(s): 64.60.Ak, 03.40.Kf, 63.50.+x, 68.35.Ja

INTRODUCTION

Objects with irregular geometry are ubiquitous in na-
ture and their vibrational properties are of general in-
terest. How do trees respond to wind? How do sea
waves depend on the topography or geometrical structure
of coasts and breakwaters? How can we explain the vi-
brational properties of glasses? All these questions are
largely unanswered. The emergence of the notion of frac-
tal geometry is a significant breakthrough in the descrip-
tion of irregularity [1]. Not only does fractal geometry
permit a description of strong statistical irregularity, but
it allows us to consider strongly irregular deterministic
objects as good approximate objects to understand. If the
physical properties of the objects that we consider are in
fact related to the hierarchical character of the geometry,
then their principal physical characteristics can be found
by studying these deterministic objects [2].

Fractal objects have no translational invariance. We
know that when a physical system has complete transla-
tional invariance it can support wave excitations of any
wavelength. When the system has limited translational
invariance it can support only a restricted set of excita-
tions. This is true of lattice waves in crystals and of mi-
crowave cavities. A fractal object has dilatation invari-
ance but not translational invariance and cannot transmit
ordinary waves. The study of waves or harmonic oscilla-
tions carried by fractals is a particular case of the study
of localization or delocalization of single eigenstates
much like the problem of Anderson localization. Here
however, “disorder” comes in the form of a geometrical
irregularity which can be studied in the approximate
deterministic situation. It has already been shown that
the excitations of a fractal lattice, called fractons, are
generally localized [3,4]. The purpose of the present pa-
per is to present a partial study of the vibrations of an ob-
ject which is not a fractal object but which is bounded by
a fractal boundary. This is the case of a fractal bounded
resonator introduced by Berry in the form of a conjecture
on the value of the asymptotic density of states [5].
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Significant mathematical effort [6—9] has been undertak-
en, but little has been done in the field of physics because
the conjecture [5] predicts a small correction to the densi-
ty of states, an effect hardly perceptible under the usual
physical conditions. For instance, the radiation from a
fractal blackbody is expected to be essentially the same as
the radiation of an ordinary blackbody. Up to now little
has been done to study the structure of the modes of vi-
brations and their properties [10]. A preliminary experi-
mental and numerical study of the vibrations of a fractal
drum has been published recently [11]. In that paper, the
experimental observation of localization was attributed to
the existence of finite damping.

In addition to the spatial distribution of the harmonic
excitations, the two main properties of resonators are
their spectrum and their damping. This paper will deal
mainly with the first aspect: wave forms, density of
states, and possible localization.

To avoid confusion with the fracton problem we pro-
pose to call the modes of vibrations of an homogeneous
medium bound by the fractal boundary fractinos. In or-
der to relate this name to the usual vocabulary of the field
of fractals note that fractons are vibrations of mass frac-
tals while fractinos would be vibrations of surface frac-
tals. The last section of this paper presents a proposition
for a unified vocabulary for the vibrations of fractal sys-
tems.

We consider here the excitations of a fractal drum, or
more precisely of a fractal tambourine. We first compute
the eigenfrequencies and wave forms using an analogy be-
tween the Helmholtz and the diffusion equations. With
the diffusion picture one can describe the behavior of the
profile of the wave near the boundary and relate it to the
harmonic measure on the same frontier. We show that
the vibrations exhibit infinite derivatives at some points
at the edge of the fractal boundary. The problem of the
vibrations localization is qualitatively examined. Locali-
zation in a small region of the drum may exist for low-
frequency modes if there exists a “narrow path” in the
structure of the drum. Finally, we give a brief qualitative

3013 ©1993 The American Physical Society



3014

description of how these results may help to understand
vibrational properties in binary glasses.

FREQUENCY SPECTRUM AND WAVE FORMS

We have calculated numerically the lowest-energy
modes of the fractal drum for different orders of itera-
tion, in the absence of damping. The method, as ex-
plained below, is based in the analogy between the wave
equation and the diffusion equation. Let }V be the interior
of the drum and T its boundary where the amplitude of
the wave W is zero. The free-wave equation, which we
wish to solve in the volume (surface) of the fractal drum,
is

2
Av=(1/¢)9%
at?
where c is the wave velocity, depending on the tension
and density of the membrane. Classically, time-
factorized solutions of this equation are known to be of
the form

(1)

z(x,y,t)=¥(x,ylexpliot) , 2)

where the wave form W¥(x,y) is a solution of the eigenval-
ue equation for the Laplacian in the region V:

AV=(—a?/c)¥ . (3)
A direct numerical integration of Eq. (3) is known to pos-
sess instabilities. Instead we consider the time-dependent
diffusion equation on the same domain ¥V with absorbing
boundary conditions:

DAY= ikl ,

ot

where D is the diffusion coefficient. Similarly, solutions
of the form

4

z(x,y,t)=W(x,p)exp(—t /) (5)

lead to the eigenvalue problem:
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AV=(—1/D1)¥ , (6)

and hence also to the wave eigenvalue problem (3)
through the correspondence

(D7) '=w?/c?. (7)

So far this is the same problem, but we can study nu-
merically the time evolution equation (4). We order the
set of all the solutions (¥,,7,) with decreasing values of
T,, so that ¥, is the eigenfunction associated with the
nth mode, with

ToZTIZTy= 27,2 . (8)
Now any function z(x,y) defined on V can be expanded
on the basis of all eigenvalues ¥, as

z(x,y)=c,¥,(x,p) . (9)

Taking this function as an initial distribution
z(x,y,t =0)=z(x,y) and computing numerically its time
evolution through Eq. (4) will result after a time ¢ in the
profile z (x,y,?):

z(x,p,t)= c,exp(—t/7,)¥,(x,y) . (10)
n

Equation (10) states that the coefficients of the linear
expansion will tend to zero with different time constants
7,. Hence, except for possible degeneracy, the eigenfunc-
tion with the largest time constant and nonzero initial
weight will dominate after some time, so that z(x,y,?) be-
comes a better and better approximation to the funda-
mental. We start, for example, with a constant trial func-
tion zy(x,y,t=0)=1. After a given time the numerical
evolution leads to a function proportional to
Wo(x,y)exp(—t/79). Numerically, this may be verified
by looking for the regime when the function z (x,y,?) de-
cays everywhere with the same time constant up to a
small predetermined relative error. An example of the
decay in time of the average concentration of particles is
shown in Fig. 1. At long times the decay is found to be
exponential. From the exponential time constant 7, we

=0) >

Iog1 0< Z(x:y»t)/z(x:y,t
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FIG. 1. Decay of the local concentration as
a function of time. The long term time con-
stant is 7.
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find w, using relation (7). We then normalize the wave-
form function to obtain Wy(x,y). Then the next trial
function is

zl(x,y,t——‘0)“—‘I—Wo(x,y)fdmm\l’o(x,y)ds ) (11)

which is orthogonal to Wy(x,y). The new distribution
converges to the next eigenfunction with nonzero initial
weight, namely W,(x,y). The procedure is then iterated
and the states are obtained sequentially, orthogonalizing
the (n + 1)th initial distribution to the n previously com-
puted eigenfunctions, thus converging to the (n + 1)th
one. Such a method cannot be used for an indefinite
number of eigenmodes as numerical errors can add up at
each step. Of course, for a state to be found in this pro-
cess it must have a nonzero weight in the initial distribu-
tion or appear in the numerical evolution from the nu-
merical noise which has components on any state. The
drum possess a C, symmetry from which we know that
the eigenstates are either conserved through a rotation of
/2 and 7 or change sign after a rotation of 7/2 or .
As a consequence we start either with a distribution
which is positive in the four quadrants (+,+,+,+) or
which is like (+,—,+,—) or (+, +, —, —), correspond-
ing to a state of degeneracy 2 through a rotation of 7 /2.
We then separate ab initio the modes of different symme-
try, which as the double interest of giving a better separa-
tion between modes (and a smaller time of convergence)
and diminishing the number of orthogonalization pro-
cedures (and the error propagation accordingly). In the
case of degeneracy the algorithm yields a combination of
the degenerate modes, depending on the initial profile.

For numerical efficiency, the diffusion equation (3) was
discretized both in space and time, so that the computa-
tion took place on a square grid compatible with the
boundary conditions. To evaluate the quality of our re-
sults we must discuss the various sources of uncertainty.
There are in principle three types of errors in this
method: systematic errors due to time and space discreti-
zation and numerical errors due to truncation of numbers
in the computation.

Time discretization amounts to the replacement of
exp(—t /1) by its discretized form exp(—n )(At /7) or by
[exp(— At /7)]", which is a power law. Here At is the
discretization time interval such that t =n At. This effect
does not appear in the results as presented here.

The systematic effect of space discretization can be
evaluated by comparison with the case of a square drum
for which exact solutions are known both for the continu-
ous and the discretized form. The vibrating modes of the
continuous square drum can be labeled by the number of
half wavelengths in the x,y directions n» and m. The
square of the eigenfrequencies is simply given by the sum
of their squares. Using a reduced frequency 2 defined by
Q=w/wy, where wo=2'"*7c /L is the fundamental fre-
quency of the square drum with a side L,

Q¥ m,n)=(m?*+n3/2, mn=123,.... (12)

On a square grid with Z segments per side, the exact for-
mula is [13]

Q%L (m,n)=(Z%/7*)[2—cos(wn /Z)—cos(mm /Z)] , (13)
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which converges to (12) when Z tends to infinity. The
systematic error obtained by approximating (12) by (13) is
of order

AQH)=(Q2—0%)=(7?/24Z*)(m*+n?) . (14)

As discussed later the number N of states up to Q2 is of
order (7/2)Q% The average distance between two con-
secutive states is of the order of the inverse of the density
of states, i.e., of order 2 /7. The systematic error due to
the presence of the grid is of the order of two consecutive
states separation when

(72 /24Z%) (m*+n*)=2/7 . (15)

This condition corresponds to N ~2Z. We have calculat-
ed the eigenvalues in the case of the fractal shown in Fig.
2 for generation v=0 (the square initiator) with Z =128,
generation v=1 and 2 with the same Z, and generation
v=3 with Z=256. The number of points on the smaller
linear segment of the fractal perimeter is then, respective-
ly, 127, 31, 7 and 3. With the above values of Z we can
obtain of the order of 100 states with good accuracy.
Note that what appears as a systematic error due to
space discretization in the calculation of the continuous
membrane disappears when one consider the harmonic
vibrations of a real discretized system. For example, our
results are exact (apart from numerical error) for the vi-
brations of a small fractal crystallite containing Z? atoms
arranged in the same manner as in our discretized drum.
Apart from the systematic effects of space discretiza-
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FIG. 2. The fractal drum at stage v=0, 1, and 3 of iteration.
The generator is shown at the top. The area of the vibrating
membrane is conserved through the iteration process. The frac-
tal dimension of the perimeter is D =In8/In4=23.
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tion, the errors are due to numerical truncation in the
computer. The calculation is performed on a Siemens
VP200 vector processor in double precision. As the am-
plitude of the function decays, the relative error due to
number truncation increases. For this reason we take
care to renormalize the evolving distribution. Also, as
the eigenfunctions are found only with a finite precision,
there is always a (small) contribution of the previous
states in the starting function. As the process takes place
the relative contribution of these states increases because
they correspond to a larger time constant. For this
reason we take care to regularly reorthogonalize the
evolving distribution to the previous states. The final
precision is then determined mostly by “how close to an
exponential decay” we choose to stop the computation.
To characterize quantitatively this accuracy we compare
the distributions at different times z(x,y,t,), z(x,,t,),
z(x,y,t3)... . We compute the norm of these functions
respectively, N(¢,), N(t,), and N(T;),.... We then
look for the maximum deviation between the renormal-
ized distribution,

A =max,,|z(x,y,t,)/N(ty)—z(x,p,t,)/N(t})] , 16)
Ayy=max,,|z(x,y,13)/N(t3)—z(x,y,1,) /N(t,)] ,

and wait for these deviations to be smaller than a
predetermined deviation § which we have chosen equal to
107%. The choice of the parameter & is in fact a point of
some difficulty as it determines the computing time and
the computational error, which itself determines the sep-
aration of quasidegenerate modes. To calibrate § we
benefited from the results of the square for which we have
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exact solutions. Of course interference between systemat-
ic and numerical mechanisms can perturb the accuracy
and it is for this reason that comparison with a known
case is of great utility, as we show now.

The average time for the computation of one state is of
the order of 10 s for the discretized square 127X 127.
For a given geometry, computing time grows linearly
with the number of points inside the drum. But for the
same number of points the computing time (for a given
numerical accuracy) depends significantly on the
geometry because, as we will see, there can exist regions
of the drum which are slow to equilibrate. For example,
for the fractal with v=2 the average time for the compu-
tation of one state was of the order of 1 min for the same
127X 127 number of inner points. We have computed
300 eigenvalues for the discretized square and the fractal
of generation 1, 256 eigenvalues for generation 2, and 100
eigenvalues for generation 3. The results of the computa-
tion of the eigenfrequencies are shown in Table I for the
20 lower values [12]. The values of Q2 are, respectively,
exact values for the continuous square [Eq. (12)], exact
values [Eq. (13)] for the discretized square with 127 inner
sites per segment, numerical results for the discretized
square with 127 sites per segment, the fractal with v=1
with 31 sites per segment, the fractal with v=2 with 7
sites per segment, and the fractal with v=3 with 3 sites
per segment. The difference between the continuous and
the discretized square is due only to discretization. The
comparison between the numerical values obtained for
the discretized square and the exact values calculated
from Eq. (13) give a qualitative measure for our precision.
The largest deviation (of order 1077) is found for N =11,
but the average error is much smaller. It is interesting to

TABLE 1. Eigenvalues of the Laplacian on various drums (in reduced units). The first column gives
the index (or integrated density of states) of the state. The second column gives the exact eigenvalues
for the continuous square drum [Eq. (12)]. Column 3 gives the exact results from Eq. (13) for the discre-
tized square with 127 inner sites per segment. Columns 4, 5, 6, and 7 give, respectively, the numerical
eigenvalues for generations O (the discretized square) and the fractal drums with v=1, 2, and 3.

Index (n2+m?)/2 Eq. (13) Gen.0 v=1 v=2 v=3
1 1.00 0.999 949 992 0.999 949 992 3.331 80000 4.135399 82 4.410699 84
2 2.50 2.49957323 2.49957323 6.258 099 08 8.891093 25 9.81221581
3 2.50 2.499 57323 2.49957323 6.258 099 08 8.891093 25 9.81221581
4 4.00 3.999 196 77 3.999 196 77 6.562 184 81 9.21675873 10.1835051
5 5.00 4.997 94197 4.997 942 45 6.93074226 9.368 74580 10.3058233
6 5.00 4.99794197 4.997 942 45 8.748 75259 10.5828667 11.2780857
7 6.50 6.497 56575 6.497 56575 8.74875259 10.5828667 11.278 0857
8 6.50 6.497 56575 6.497 56575 11.025989 5 14.3662310 15.4101465
9 8.50 8.493 55125 8.493 55125 11.8967590 16.2932949 17.6449757
10 8.50 8.493 55125 8.493 55125 12.1134005 17.1652718 18.6701202
11 9.00 8.995934 49 9.99579048 12.1134005 17.1652718 18.6701202
12 10.0 9.993174 55 9.993 17551 12.4208250 18.2254620 19.800 1842
13 10.0 9.993174 55 9.993 17551 13.298 184 4 19.4404602 20.990 6979
14 12.5 12.491543 8 12.491543 8 14.503 058 4 21.1877556 22.624 874 1
15 12.5 12.491543 8 12.4915438 14.503058 4 21.5147820 23.164 8884
16 13.0 12.984 0002 12.984 2949 15.9870005 21.5147820 23.164 8884
17 13.0 12.9842958 12.984 2949 17.093 3990 25.070900 0 26.9462337
18 14.5 14.483919 1 14.4839182 18.2396507 25.6318588 27.5605145
19 14.5 14.483919 1 14.4839182 18.8462105 28.0593510 30.5718708
20 16.0 159871531 15.987000 5 18.8462105 28.0593510 30.5718708
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note that the state N=11 for which the error is max-
imum is the closest to other states. We are then qualita-
tively in a situation of quasidegeneracy in which one ex-
pects a lower precision. The fact that the numerical er-
rors do not increase for higher frequency is in itself quali-
tative evidence that the eigenfunctions are obtained with
very good accuracy. Even for much higher eigenvalues
the numerical precision is very good in the case of the
discretized square: for example, the state n =m =14 is
the state N =288. The value from Eq. (13) is
Q2=194.079 113 and the numerical value is found to be
equal to 194.079 117. For this state the relative numeri-
cal error is only of order 3X 10~ °. It demonstrates that
our criterion for convergence is in fact very stringent.
Another test, this one on the fractal itself, uses the fact
that the fractal drum at a given order of iteration v is
constituted by a collection of joint identical squares of
size L /4¥. Some modes of the fractal drum, which can
be considered as ‘“trivial,” are compatible with this
decomposition and for that reason can be easily comput-
ed analytically. In these trivial states an elementary seg-
ment of the contour contains an integer number of half
wavelengths. The eigenfunctions have the form

Y(x,y)~sin(2®umx /L )sin(2¥u'my /L) , (17)

where p,u’'=1,2,3,... . The exact eigenvalue corre-

sponding to (17) is
02:24v—1(#2+#12) . (18)

For example, the state n =m =4 of the square (N =20)
corresponds to the state N =16,u=1,u’=1 for the frac-
tal with v=1. The corresponding numerical eigenvalue
found in Table I is good to better than 10~°. Other ex-
amples are given in Table II. The deviation between the
exact and the numerical values are at most of order 10™°
and in most of the cases smaller than 10~°. The larger
errors corresponds to states which are quasidegenerate.
If the numerical precision was infinite there would be no
interest in this comparison because the trivial states are
essentially the states on the smaller identical squares
which are of the same for the fractal and for the square.
However, if significant numerical errors were perturbing

the calculation of the nontrivial fractal states that would
induce an error in our process in which errors can add,
resulting in errors in the final values for the trivial states.
The very fact that we find no evidence of numerical er-
rors for the trivial states is an indication that we can have
good confidence in our numerical values.

Finally note that our method gives both the eigenfunc-
tion and the eigenvalue in the same step and this is true
of eigenfunctions which have infinite derivatives at some
points on the perimeter as discussed in the next section.

THE WAVE FORM OF THE FUNDAMENTAL

We have concentrated on the study of the density of
states and of the geometric properties of the fundamental
wave form. We have given special attention to the com-
putation of the wave form of the fundamental state of the
drum of generation v=3 by using a grid with eight lattice
spacings for the smaller segment (511X 511 points in the
drum). A picture of the fundamental is shown in Fig. 3
(top). It exhibits no node line as predicted by general
theorems [14] and it is centered in the central part of the
drum and corresponds to Q,=2.1002 (in our reduced
units). One observes in the figure that the amplitude de-
cays strongly from the center towards the edges of the
drum. This is exemplified in Fig. 3 (lower part) where the
space dependence of the logarithm of the amplitude is
shown. The fact that the apparent slope of that “moun-
tain” increases when the deepest bay is reached is a visual
indication of the fractal ‘“screening” of the wave form.
The spatial dependence of the logarithm of the amplitude
along the x direction indicated in Fig. 2 is shown in Fig.
4. There are four regions that we wish to discuss: 4, B,
C, and D.

The very steep increase near the origin (region A) is a
visualization of the singular behavior of the modes near
the wedges of the frontier geometry. Very near the
boundary the modes are singular in the sense that their
derivatives are infinite at particular points on the frontier
[10]. Consider, for example, Fig. 2 in the region of the
membrane around a salient corner. Very near the bound-
ary the amplitude of the vibration is very small and

TABLE II. Comparison of the numerical results for the “trivial” states of generation 1 and the cor-
responding value for the discretized square. Columns 1, 2, and 3 give, respectively, the index (n,m) of a
state of the discretized square, its number in the hierarchy of eigenvalues, and the exact eigenvalue
given by Eq. (13). Columns 4, 5, and 6 give, respectively, the index (u,u’), the number in the hierarchy,
and the numerical eigenvalues for the trivial states of the drum with v=1. The indices (u,u’) are those
appearing in Eq. (17), which gives for the continuous membrane the same value as Eq. (12) for the cor-

responding values of (n,m).

n m N,—o (Q,-0)* H u N, (Q,=)?
4 8 53(54) 39.890899 7 1 2 48(49) 39.890899 7
8 8 90 63.794 6472 2 2 77 63.794 9982
4 12 113(114) 79.4746170 1 3 105(106) 79.4746170
8 12 151(152) 103.378 365 2 3 134(135) 103.378 365
4 16 198(199) 134.357071 1 4 184(185) 134.357071
12 12 208 142.962 082 3 3 193 142.962 082
8 16 233(234) 158.260 818 2 4 215(216) 168.260818
12 16 295(296) 197.844 818 3 4 269(270) 197.844 543
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Ay=0. In the polar coordinates (p,¢) of Fig. 2 the solu-
tion is of the form ¥ ~p?/*sin(2¢/3). The derivative
dy/dp~p '3 goes to infinity when p goes to 0. This
corresponds to a local infinite stress and strain of the
membrane. Such a property should be true near
equivalent salient points in the structure. If one would
have rounded salient wedges, the derivative would not
tend to infinity but to a large finite value proportional to
the inverse of the radius of curvature of the contour.
Singularities of the amplitude around the wedges are ap-
parent in Fig. 3. Should the frontier possess an infinitely
sharp edge, the singular modes would have infinite
derivatives near the fractal boundaries. In an experiment
they would then exhibit infinite stress in the elastic mem-
brane and rupture around these points even for a finite
amplitude of excitation. The behavior of the singularity
is exemplified in Fig. 5 where a plot of log,,(¥) as a func-
tion of log;o(x) is shown. The direction x corresponds to
¢=m and p=x. The slope in Fig. 5 is found to be equal
to 0.71 instead of 2, predicted by the above argument.
This relatively large difference is probably due to the fact
that it is near salient points that discretization has the
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FIG. 3. Wave form of the fundamental vibration for v=3.
Top: the wave form itself. Bottom: the logarithm of the wave
form. The fact that the apparent slope of this logarithmic
mountain increases when moving towards the narrower and
narrower bays is indicative of the screening of the wave by the
structure. The derivative of the wave form is very large at
salient corners.
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FIG. 4. Space dependence of the fundamental wave form.
The logarithm of the amplitude of the fundamental is given as a
function of the x coordinate indicated in Fig. 2. In region A4
near a salient point the wave form exhibits a singular behavior.
Note the successive quasilinear decreases of the logarithm in re-
gions B, C, and D.

stronger effects on the numerical wave profile.

In regions B, C, and D the behavior can be approxi-
mately described by a succession of exponential decays
with increasing rapidity. This is qualitatively reminiscent
of which has been called ‘“‘superlocalization” [15]. In the
case of superlocalization the spatial dependence is of the
form W~exp(—x“). Here the screening effect is even
more efficient. It is caused qualitatively by the fact that
the wave has to penetrate into narrower and narrower
channels to get to the frontier.

One can give the following simple argument for the ex-
istence of an extremely rapid decrease of the wave ampli-
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FIG. 5. Singular behavior of the fundamental wave form
near a salient corner. The observed slope is 0.71 instead of 0.66
predicted by the behavior of the solutions of the continuous La-
place equation near a salient corner.
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tude in smaller and smaller regions of the fractal
geometry. This argument is based on the diffusion pic-
ture for our problem. We consider the fundamental state
which has an exponential decay time 7, of the order of
L?/D where L is the macroscopic size of the fractal tam-
bourine. This characteristic time is to be compared with
a local diffusion time in a region of the drum with a much
smaller characteristic size [. Locally the decay time is of
the order of /2/D much smaller than 7, Because we
know that the entire wave form decays exponentially
with the time constant 7\, there must exist a mechanism
which compensates for the rapid absorption of particles
by the nearby frontier. The compensating mechanism
can only be diffusion from a broader region. But to com-
pensate for the rapid decay the diffusion flux must be
large and this is possible only if the gradient of the con-
centration (or wave form) is large enough. In other
words, the concentration has to vary very rapidly in
space.

This indicates that the time-dependent term in Eq. (1)
can be neglected in the study of the behavior of the wave
near the frontier where the Helmoltz equation reduces to
the Laplace equation. Then the knowledge which we
have from the study of the harmonic measure and its
multifractal distribution can be used to describe the at-
tenuation of the amplitude of the wave [16].

Qualitatively one can consider the variation of ¥ in
smaller and smaller apertures as in Fig. 6. The value of
the concentration of diffusing particles in the region i of
typical size L /a’ is ¥; and 4, in region i +1 of size
L /a'*!. The rate of absorption of particles by the fron-
tier in region i is of the order of
¥; (L /a')*/D YL /a')? or Di;,,. This must be ap-
proximately equal to the net diffusion flux which from
Fick’s law is of order (L/a')D(¢;—1;,,)/(L/a’) or
D(y;—; ). Consequently, whatever the consecutive
smaller and smaller regions that we consider, the de-
crease (Y;—1; ) is of order of ¥,,,. Written as a

differential equation, we have on the average
(L /al)(dl/}/dx )(x =xi) _Ilj(x =xi) OT
4L = =100, (19)

where w(x) is the “local width” of the channel in which
we study the wave attenuation. For a parallel slit of con-
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FIG. 6. Behavior of the wave amplitude in narrower and nar-
rower regions.
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FIG. 7. A Cantor bar screener in which the wave is screened
as exp(— 47).

stant width w(x)=a the attenuation is proportional to
exp(—mx /a) [16].

Approximating the decay in regions B, C, and D of
Fig. 4 by exponentials, the slopes of the logarithmic plot
are, respectively, —0.0105, —0.041, and —0.163. These
slopes are in a ratio of order 4, clearly compatible with
the successive widths in the geometry determined by a di-
lation factor a equal to 4.

In the same framework one could consider the proper-
ties of certain geometries as ‘“wave screeners.” For in-
stance, Fig. 7 shows a drum with a Cantor bar frontier.
It is merely a succession of narrower and narrower guides
of length L’ and width a /a". After a distance x =nL’
along the bar, the amplitude should be of the order
of (a/A)a""exp[—(7L'/a)a+a*+ -+ +a")], or in
first approximation (a/A)a™"exp[—(wL'a"/a)]=(a/
Aa"*Lexp[—(wL'a*’*' /a)]. This is indeed a very
rapid decrease of the wave amplitude. It is more rapid
than the ‘“‘superlocalization” behavior. Note that the
Cantor bar is not self-similar but self-affine. It is qualita-
tively clear that the effectiveness for screening in these
self-affine structures is higher than in self-similar struc-
tures because pores become narrower more rapidly than
they become deeper.

The fact that the information dimension of the har-
monic measure has a dimension of one in d =2 indicates
that whatever the roughness of a d =2 resonator the fre-
quency of the fundamental will be related to the overall
size of the resonator. This could be different in d =3
where we do not have general results on the behavior of
the harmonic measure.

THE LOW-FREQUENCY DENSITY OF STATES

The question of how the density of states of a resonator
depends on its geometry is an old question in mathemati-
cal physics (see Refs. [S-9] and references therein) that
has been discussed only in the so-called asymptotic limit:
Let N (X) denote the counting function (or the integrated
density of states) that is the number of eigenvalues (in-
cluding multiplicity) of the equation AY= —XW¥ smaller
than X. Then for a resonator in dimension d and for
X—> oo

N(X)=27) *B,V,X*+C(X), (20)

where B, is the volume of the unit ball in R, V, is the
volume of the resonator (the surface for a membrane),
and C(X) is a correcting term, the relative contribution
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of which tends to O when X — . Recently an expression
ha been conjectured for C(X) for a fractal resonator so
that the density of states could be written (with our nota-
tion)

N(Q*)=(7/2)0*~c, ,M(D,T)QP
=+ (higher-order terms) . (21)

Here D is the Minkowski dimension of the frontier,
M (D,T") is the Minkowski content of the frontier (the
“fractal” equivalent of the length or the surface), and ¢, ;
is a positive constant depending only on d and D. This
constitutes the Weyl-Berry-Lapidus [7-9] conjecture
which has been demonstrated by Lapidus and Pomerance
in the case of d =1. This conjecture holds for a real
mathematical fractal, that is, for the case where the order
of iteration goes to infinity.

Two remarks can be made about the above equation.
This formula describes the asymptotic behavior when
}— . For a resonator with a fractal frontier, D <d
and the fractal contribution is only a correction to the
normal density of states. This asymptotic effect then can
hardly play a role in the physical properties of a resona-
tor. For instance, a fractal blackbody would radiate
essentially like a smooth blackbody. The fact that what
appears in formula (20) is the Minkowski dimension is in-
tuitively clear since one expects that the volume of the
resonator in the vicinity of the frontier should be able to
accommodate a half wavelength.

If we consider now a ‘“‘physical” fractal with only a
finite range of decimation, the above formula tells us that
the correction, in the asymptotic limit, is that for a
smooth surface. The “gross” fractal structure plays no
role in the asymptotic frequency range.

The results of our computation are shown in Fig. 8.
The main effect that one finds in Fig. 8 is the marked de-
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FIG. 8. Integrated density of state N(Q?) as a function of Q?
for various orders of decimation of the fractal frontier. From
top to bottom: discretized square, fractal drum with v=1, 2,
and 3.
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crease of the density of states due to the irregularity of
the frontier. Increasing the order of the generation has a
smaller and smaller effect on a given eigenvalue. Al-
though we are considering in this paper the low-
frequency states for which the higher-order terms in Eq.
(20) may play an important role, it is interesting to com-
pare Eq. (20) with our results for the frequency range in
which we work. The correction C (Q?) due to the surface
roughness is the difference between the density of states
of the smooth resonator (v=0) and that in the fractal:

C,(Q)=N(Q?),_,—N(Q?), , (22)

where N(Q?), is the numerical value of the integrated
density of states and N(Q?),_, is calculated for the same
values of Q2 by a linear interpolation fit. The results are
shown in Fig. 9.

The lower curve is the correction term for the drum
with v=1. This drum is irregular, but only for scales
larger than L /4. If one considers vibrations with half
wavelengths smaller than L /4, the density of states
should be approximately that of an ordinary drum with
the same area. It is known that the density of states is of
the order of the number of squares with sides equal to a
half wavelength, which are necessary to cover the entire
surface of a resonator. If one notes that the coordinate
Q? represents [from relation (12)] twice the square of the
number of wavelengths in the sides of the square, one ex-
pects that for n and m >>4 the density of states is close to
that of the smooth resonator with the same area. This is
in fact the case as shown in Fig. 9 in which the correction
term saturates very quickly for Q2> 20.

For the drum with v=2 the range of perturbed
behavior is extended by a factor 42. This corresponds
roughly to the range of values that we have calculate.
For the drum with v=3 the number of states that we
have calculated is too small to permit comparison. A
power-law fit of the correction gives C(Q?),—_,~Q!?® in-
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FIG. 9. Correction to the density of states due to the
geometry of the frontier. From bottom to top fractal drum with
v=1,2,and 3.
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stead of Q', predicted by relation (21). This shows that
the higher-order terms in Eq. (21) are not totally negligi-
ble in this regime.

ARE FRACTINOS LOCALIZED OR NOT?

The problem of localization is a very general problem
in the physics of disordered materials and has received
considerable attention in the past. Usually the problem is
considered in the following context. A disordered system
is imbedded in an infinite (or quasi-infinite) medium and
the problem is to understand which excitations of the sys-
tem are localized. A localized state corresponds to a
wave form ¥(r), which is essentially contained in a finite
volume in contradistinction to a delocalized state which
occupies an infinite (or semi-infinite) volume. Here, any
vibration is confined in the volume of the resonator and
in that sense is trivially localized. But one can still make
a distinction between the states depending on how these
states fill the internal volume of the resonator. From now
on we discuss this property. More precisely, following
Thouless, we will call the localization surface (volume) of
a given normalized state W the quantity s, (v;) defined by

5= {f|\ll|4ds]_1 . (23)

It is this quantity that we now evaluate for different
cases. We consider a very schematic geometry as consti-
tuted by a square drum on which a smaller drum is
branched as shown in Fig. 10. The larger drum has a side
L, the small drum has a side L /a, and they are separated
by a ‘“‘narrow” channel of width a and length A. The
problem that we address is to what extent a state of the
entire system can be localized in the smaller drum. Be-
cause wave problems and quantum mechanics have simi-
lar formulation [Eq. (3) has the form of the time-
independent Schrodinger equation], we will discuss that

L
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FIG. 10. Scheme of the mechanism of localization of frac-
tinos. Top: geometrical situation. Bottom: scheme of the ener-
gy levels comparing the energies in a large resonator to the en-
ergy of the fundamental vibration in a smaller region.

problem in the content of quantum wells, probably more
familiar to the reader. A fractal drum is in this frame-
work a fractal quantum well in d =2. To discuss this
question we use ordinary Rayleigh perturbation theory
and the standard language of quantum mechanics. We
keep in mind that the correspondence between an energy
E for a quantum particle with mass m and the square of
the frequency for the drum is given by

w*=(87*mc?/h?)E . (24)

where 4 is the Planck constant. We call ¥, and ¥, the
states in the large and small drums, respectively. The en-
ergy spectrum of the noninteracting drums is schema-
tized in Fig. 10. In this scheme we wish to find which
states of the interacting drums are localized, if any, in the
small drum. For simplicity we consider the normalized
fundamental state of the smaller drum ¥, with energy
E,. In asuitable system of coordinates

Y, =2(a/L)sin(mrax /L)sin(way /L) , (25)
E,=(h*/4m)(a/L)* . (26)

Among the states of the large drum the nearest to E,, is
WV, with energy E, corresponding to some adequate
values for n and m

W, =2L " Ysin(nmx /L )sin(mmy /L) , 27

E,=(h%*/8m)L *n*+m?). (28)
Because E, ~E

[((n*+m*) /2] ~a, 29)

and in the following we will use for simplicity n ~a. If a
channel of width a and length A exists as in Fig. 10 there
is a small “leak” of both states which permits the interac-
tion. To find this leak we have to find solutions of the
Schrodinger equation which in the channel is written

2 2
(—h2/8a%m) |2 \p2 9 \1/2 =KV¥=(h*/4m)(a/L)*¥
ox’ ay’

(30)
because a small aperture will not perturb signifi-
cantly the energy. Solutions are of the form
W ~exp(—kx')sin(y’'m/a) with

k*—(m/a)y=2m%a/L) . 31
If the channel is “narrow”, a <2L /a and
k=m/a . (32)

In first approximation the wave functions in the chan-
nel are given by

W, ~2a(a/L )exp(—kx')sin(my’ /a) , (33)
¥, ~2aal “%exp[k(x’'—A)]sin(wy’/a) , (34)

where we have taken into account approximatively that
the amplitude has to be matched to the oscillations inside
the drums. The matrix element of the interaction Hamil-
tonian, here the kinetic energy K in Eq. (30) is easily cal-
culated
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(W,IK[¥,)~(h*/2m)(a’a’A/L®exp(—7A/a), (35)

where we have used (31)-(34). The first-order perturbed
wave function is of the form

V=W, +eV, , (36)

where € is the contamination factor e=(W,|K|¥,)/
(E,—Ey). The distance E, —E, is, except in the case of
resonance, of the order of the distance between consecu-
tive energy level of the large drum (multiplied by 1 on the
average). This last quantity is of the order of
(h?/87mm )L % and the order of magnitude of € is

e~4m(a’a’A/L*)exp(—mA/a) . (37)

Under many conditions this factor will be very small and
in such a case the perturbed state is localized because

1= [f|‘l’u+6‘l’y|4ds T2 /0y (38)

and the localization surface is essentially that of the
smaller drum. When one considers states which are
higher in the spectrum, this localization property will
disappear because the matrix elements of the interaction
increases. However, in d =2 this localization property is
really a hierarchical property since if one considers a situ-
ation in which a smaller resonator is connected to the
above two, the same reasoning will apply and there will
also exist states which are localized in this smaller cavity.
The conclusion is that in such a situation in d =2, there
may exist an infinity of localized states, of course provid-
ed that there exists “narrow channels” in the drum
geometry. The existence of states localized at the edge
will depend on how ramified the edge region is, and
therefore depends on the fractal dimension of the bound-
ary. Even more, with the same fractal dimension, locali-
zation will be favored by the presence of these narrow
channels.

In principle, similar results could be obtained in d =3,
but in d =3 the energy levels are more and more dense at
high energy and the “contamination factor” increases. In
consequence, in d =3, only states at low energy can be lo-
calized (again if narrow channels exist). In both d =2
and 3 the localized states are a small fraction of the total
number of states at high energy.

FRACTONS, SURFACE FRACTONS,
AND FRACTINOS IN BINARY GLASSES

We discuss now why we found it necessary to intro-
duce the term fractinos to name the vibrations of a fractal
tambourine. We propose a unified vocabulary to avoid
confusion in future discussion. One must start from the
general term of fractal resonator to describe a resonator
with fractal geometry. This term was introduced by Ber-
ry [5]. There are two kinds of fractal resonators: mass
fractal resonators and surface fractal resonators. The
first case to be studied has been the case of the harmonic
vibrations of mass fractals and were named fractons.
This term is appropriate since in several cases the vibra-
tions of mass fractal have a density of states character-
ized by a spectral dimension very different from the Eu-
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clidian dimension and the fractal dimension [3,4]. Also
these fractons have special localizations properties. Note
that all vibrations of mass fractals do not have necessarily
all these properties, but it seems reasonable to keep the
name of fractons to describe the vibrations of mass frac-
tals.

Coming to the vibrations of surface fractals, one could
think of the term of surface fractons to name these vibra-
tions (keeping in mind that usual fractons could be con-
sidered as “mass fractons”). Unfortunately, this would
be misleading in three ways. First the name surface frac-
ton intuitively describes the vibrations of the outer sur-
face of an object, much like the name surface phonons de-
scribes the vibrations of the surface (or the region very
near the surface) of crystals. Here the surface itself is
fixed and does not vibrate. Second, as we have seen
above, the density of states for the vibrations of surface
fractals is very different from that of fractons. Even more
important, there can exist real surface fractons which are
vibrations of the fractal surface of an object and which
have the properties of ordinary (mass) fractons. The
name surface fractons should be reserved to describe the
vibrational properties of these fractal interfaces. A
known example of fractal interface is a diffusion front
and we give below an example of the possible existence of
interface fractons in an otherwise dense Euclidian materi-
al. It is then because surface fractons can really exist that
one cannot use this term to name the vibrations of sur-
face fractals which are studied in this paper. It is for this
very reason that a new word is necessary and that we
propose the term of fractino.

A physical situation in which both fractinos and sur-
face fractons could be observed would be the case of a
Euclidian solid which could be considered as a collection
of fractal drums. Consider, for instance, an A,B solid
which has the structure shown in Fig. 11. In such a sys-
tem the distribution of mass is nonfractal, but there exists
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FIG. 11. A dense material with fractal internal interfaces.
The system as shown is periodic, but if randomized it could give
an image of an amorphous binary A4 -B system after phase sepa-
ration. In the case where the A atoms are joined together by
very soft springs the vibrations of the 4 atoms could be frac-
tinos while the vibrations of the interfaces could be fractons.
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in the solid an array of fractal internal interfaces. If the
local vibrational properties of A and B are strongly con-
trasted (for example, if the A-A springs are very soft and
the B-B springs very hard), it is possible that the 4-A4 vi-
brations behave approximately as fractinos and that the
vibrations of A-B interfaces possess the properties of
fractons. The fact that internal interfaces can be mass
fractal was shown several years ago, when it was shown
that diffusion fronts are natural mass fractals [17]. A
schematic picture of a diffusion front is shown in Fig. 12.
A diffusion front is essentially the outer edge of a percola-
tion cluster. In d =3 it is a mass fractal which could very
well exhibit fracton dynamics.

Such structure and dynamics may be the clue of the
observation of fractons in the dynamics of dense binary
amorphous materials. Raman and neutron inelastic
scattering of the mixed superionic glasses such as the
silver iodide, silver borate binary compounds of general
composition (Agl),(Ag,0-B,0;),_, have been interpret-
ed using the fracton concept but without a picture of
what is really fractal in this material [18].

We propose the following qualitative explanation for
these experimental observations. Such a material is an
interconnected network of Agl and (Ag,0-B,03) regions
of small scale. Because it is prepared from cooling from
the melt, it could present fractal interfaces between the
regions of different nature [17]. This material being the
glass which possess the highest known ionic conductivity,
the silver ions or part of the silver ions are weakly cou-
pled to the cage. They can possibly be the A atoms
which are coupled together by very soft springs. The
low-energy spectrum in the neutron scattering data
should be then the region where silver-silver fractinos
could be observed. As we have seen, the effective density
of states in small and rough microcrystalline atomic ar-
rangements could be significantly reduced as compared to
smooth microcrystals. The density of states of these frac-
tinos should be smaller than the w? density of states for
ordinary phonons, similar to what we have found here.
This is effectively what is seen in the Fig. 6 of Ref. [18].

At higher energy one could observe the vibrations of
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FIG. 12. A diffusion front in d=3. Only one kind of atom,
for example, the B atom, has been represented for clarity. The
upper part of this front is a mass fractal analogous to the per-
colating cluster, with a fractal dimension of approximately 2.5.
If the B-B springs are much harder than the A4- A4 springs the vi-
brations of this object, which is the interface between 4 and B
can naturally be surface fractons.
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those ions from the case which are at the interface with
the silver conducting regions. If these interfaces are frac-
tal, the fracton spectrum which was found in Ref. [18]
would correspond to the specific vibrations of the internal
fractal interfaces. Note that if the disorder is at small
scale, the number of modes associated with the internal
interfaces is not negligible. For instance, a cubic micro-
crystal with a side of ten lattice units has approximately
the same number of atoms on its surface than in the bulk.
Hence the total number of surface modes is of the same
order as the total number of modes of vibrations from the
bulk. A characteristic crossover length of 20-30 A is
typically found in these structure as a transition between
phonons (fractinos) and fractons [19]. Higher-energy vi-
brations would correspond in that picture to the B—B vi-
brations in Fig. 11. Here it could be the B—O the O—I
and I—O vibrations. Of course, for this explanation to
be feasible one must have a strong contrast between the
coupling constants of different atoms a case which is
realized in the superionic binary materials. The singular
behavior of the vibrations at the salient edges would ap-
pear in a comparatively strong anharmonicity of the vi-
brations a fact which is considered to be necessary to un-
derstand the thermal conduction of glasses at moderate
temperature [20].

CONCLUSION

We have studied, on a specific example, the low-
frequency vibrations of a physical fractal drum that we
called fractinos by computing the spectrum and the wave
form of the fundamental. Some of our results are to be
considered as indicative of the properties of strongly ir-
regular resonators and some properties are really related
to the scaling behavior of the frontier.

The four specific properties of fractinos are a very
strong attenuation inside the successive regions of the
frontier, a significant reduction of the low-frequency den-
sity of states, a singular behavior at salient points, and
possible existence of vibrational states which are localized
in a small region of the resonator.

The attenuation is a scaling effect which could be de-
scribed in the standard multifractal framework. This is
general to fractal frontiers. In particular the distribution
of the stress of the membrane along the frontier should be
multifractal. The limited range of our computation was
not sufficient to test this result, but the analogy between
solutions of the wave and Laplace equation is here to sus-
tain this fact.

The other characteristics are more a property of irreg-
ular resonators. If the geometrical structure possess nar-
row paths, localized states may exist at low frequency.
This property will depend intimately of the geometry of
the frontier.

Further studies of these systems should include the
case of 3d resonators and the study of the properties of
the resonances in the case where the vibration is free at
the boundary, that is the case of von Neuman instead of
Dirichlet boundary conditions. The numerical method
that we have used has proved to be surprisingly good. It
is certainly promising since it can probably be improved
by using hierarchical mesh. One most important prob-
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lem for future study is the discussion of the damping
properties of fractal resonators.
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